Molecular Genetics (HCB 812) Credit Hrs 3(3-0)

Course Contents

Course Code: HCB-812 Credit hours: 3 (3+0)

Contents:

CURRENT	REVISED
THE BASICS OF DNA, CHROMOSOMES, CELLS, AND DEVELOPMENT	BASICS OF DNA, CHROMOSOMES, CELLS, DEVELOPMENT AND INHERITANCE Basic principle of nucleic acid structure and gene expression Fundamentals of cells and chromosomes Fundamentals of cell-cell interaction and immune system Aspects of early mammalian development, cell differentiation and stem cells
GENES IN PEDIGREES AND POPULATIONS	GENES IN PEDIGREES AND POPULATIONS
 Monogenic vs. multifactorial Inheritance Inheritance Mendelian Pedigree Patterns 	 Monogenic vs. multifactorial Inheritance Inheritance Mendelian Pedigree Patterns
 Complications to the Basic Mendelian Pedigree Patterns Factors Affecting Gene Frequencies 	 Complications to the Basic Mendelian Pedigree Patterns Factors Affecting Gene Frequencies
ANALYZING THE STRUCTURE AND EXPRESSION OF GENES AND GENOMES	UNDERSTANDING GENOMES
 Amplifying DNA: Cell-based DNA Cloning and PCR Analyzing the Structure and Expression of Genes and Genomes 	 Core DNA technologies: amplifying DNA, nucleic acid hybridization and DNA sequencing Analyzing the structure and

INVESTIGATING THE HUMAN GENOME AND ITS RELATIONSHIP TO OTHER GENOMES

- Organization of the Human Genome
- Model Organisms, Comparative Genomics and Evolution
- Human Gene Expression
- Organization of the human, viral and bacterial genome
- •

- expression of genes and genomes
- Principles of genetic manipulation of mammalian cells
- Uncovering the architecture and workings of the human genome
- Gene regulation and epigenome

HUMAN GENETIC VARIATION AND DISEASES

- Human Genetic Variability and its Consequences
- Genetic Mapping of Mendelian Characters
- Mapping Genes Conferring Susceptibility to Complex Disease
- Identifying Human Disease Genes and Susceptibility Factors
- Methylation From DNA, RNA and Histones to Diseases and Treatment

HUMAN GENETIC DISEASES

- Molecular pathology: connecting phenotypes to genotypes
- Mapping and identifying genes for monogenic disorders
- Complex disease: identifying susceptibility factors and understanding pathogenesis

GENETIC VARIATION BETWEEN

INDIVIDUALS AND SPECIES

- Human population genetics
- Comparative genomics and genome

evolution

APPLIED HUMAN MOLECULAR GENETICS

- Genetic Testing of Individuals
- Pharmacogenetics, Personalized
 Medicine, and Population Screening
- Genetic Manipulation of Animals for Modeling Disease
- Investigating Gene Function
- Genetic Approaches to Treating Disease
- Gene Regulation and Human Disease

APPLIED HUMAN MOLECULAR GENETICS

- Genetic Testing of Individuals
- Pharmacogenetics, Personalized
 Medicine, and Population Screening
- Genetic Manipulation of Animals for Modeling Disease
- Investigating Gene Function
- Genetic Approaches to Treating Disease
- Gene Regulation and Human Disease

PHARMACOGENETICS, PHARMACOGENETICS, MEDICINE, AND PERSONALIZED MEDICINE, AND PERSONALIZED **POPULATION SCREENING** POPULATION SCREENING Evaluation of clinical tests Evaluation of clinical tests Pharmacogenetics and Pharmacogenetics and pharmacogenomics pharmacogenomics Personalized medicine: prescribing Personalized medicine: prescribing the best drug the best drug Personalized medicine: testing for Personalized medicine: testing for susceptibility to complex disease susceptibility to complex disease Population screening Population screening • The new paradigm: predict and • The new paradigm: predict and prevent? prevent? **EXPLORING ONLINE GENETIC SOURCES AND** Already teaching this module keeping in view of pandemic situation in order to teach **GENOME BROWSER** students insilico methods which will helpful **Human Genome Project** in their Insilico research. National Centre for Biotechnology Information(NCBI) **UCSC Genome Browser Human Mutation databases** General Biological databases insilico contents have been (Latest added to update and improve the course. Key: Deleted section Revised section New addition

Recommended reading, including textbooks, reference books:

- Human Molecular Genetics; Tom Strachan and Andrew P Read; 5th Edition
- Human Population Genomics; Kirk E. Lohmueller Rasmus Nielsen Editors
- Genes IX; Benjamin Lewin, 9th edition
- Principle of Genetics; D. Peter Snustad and Micheal J. Simons, 7th edition
- Genetics and Genomics and Medicine; Judith Goodship, Patrick chinnery and Tom Starchin